Month: May 2015

  • Chess – the classic AI problem

    To settle a pub argument that took place around 20 years ago (I’ve been busy, OK?!) about artificial intelligence and emergent behaviour, and because I have some work coming up in this area, I have finally got around to writing a simple chess engine.

    In terms of the pub argument, it has immediately proved that (a) yes, a chess engine can be very easily capable of beating the person who wrote it, and (b) even though it has no built-in knowledge of tactics such as forks, skewers or discovered attacks, it can and will use all such techniques during a game to very good effect. In other words, that behaviour ’emerges’ from the raw computation.

    Neither of those things will come as any surprise to anyone who understands anything
    about AI, of course. But it was fun to write, and it’s actually quite fun to play against, but also fun to play *with*. For example, it’s interesting to see how it chooses different moves depending on how many moves ahead it’s allowed to look.

    When away from the field of computer vision, the speed of a modern computer is astounding. My code is currently very unoptimised, and was written mostly for ease of writing rather than with performance in mind – and yet, on a normal desktop PC, running on one core only, it is capable of generating, and analysing, approximately one million moves (board positions) per second.

    Of course, chess is a famous example of a problem with a ‘combinatorial explosion’, meaning that for even relatively small numbers of moves to look ahead, the number of possible board positions rapidly becomes fantastically large. At 5 moves ahead, it is looking at around 100 million board positions – suddenly a millions moves per second doesn’t seem so much.

    I am currently playing it ‘against’ another computer chess game, which after a few games will provide an estimated ELO score – I’ll report back in a day or two as to the results of that.

    The current algorithm is pure ‘Minimax’, with no modifications.  It has no opening book or endgame database, so the play is a bit ragged at those stages. The first couple of moves are fairly random, but as the two sides ‘engage’ it starts making proper moves. By the end-game (at least when playing against me) it’s usually got enough of an advantage to be fairly decisive – it usually manages a check-mate during the ‘main’ part of the game, rather than waiting for a typical ‘endgame’ situation where we’ve only got 2-3 pieces each.

    When time allows, I have other plans for this – after building in simple alpha-beta pruning to speed it up, I want to start to work on strategies – but from an AI point of view, I want it to be able to learn strategies itself, rather than be pre-programmed with them. I have some ideas in mind, and it should be interesting.